Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study.

نویسندگان

  • M V Ulybyshev
  • M I Katsnelson
چکیده

We study the electronic properties of graphene with a finite concentration of vacancies or other resonant scatterers by a straightforward lattice quantum Monte Carlo calculation. Taking into account a realistic long-range Coulomb interaction, we calculate the distribution of the spin density associated with midgap states and demonstrate antiferromagnetic ordering. An energy gap is open due to interaction effects, both in the bare graphene spectrum and in the vacancy or impurity bands. In the case of a 5% concentration of resonant scatterers the latter gap is estimated to be 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4He adsorption on a single graphene sheet: Path-integral Monte Carlo study

We have performed path-integral Monte Carlo calculations to study 4He adsorption on a single graphene sheet. The 4He-substrate interaction was assumed to be a pairwise sum of the helium-carbon potentials constructed by Carlos and Cole to fit helium scattering data from a graphite surface. We employed both an anisotropic 6-12 Lennard-Jones potential and a spherical 6-12 potential. For both poten...

متن کامل

A first-principles study on magnetic coupling between carbon adatoms on graphene

The weak ferromagnetism reported for graphite and related carbon nanostructures is frequently related to the magnetic coupling of point defects such as vacancies or hydrogen adatoms that interact with only one sublattice in the bipartite graphene lattice. In this paper, using density functional theory calculations we study the magnetic coupling between point defects, such as carbon adatoms, whi...

متن کامل

Density functional investigations of defect induced mid-gap states in graphane

We have carried out ab initio electronic structure calculations on graphane (hydrogenated graphene) with single and double vacancy defects. Our analysis of the density of states reveal that such vacancies induce the mid gap states and modify the band gap. The induced states are due to the unpaired electrons on carbon atoms. Interestingly the placement and the number of such states is found to b...

متن کامل

Dual origin of defect magnetism in graphene and its reversible switching by molecular doping.

Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres su...

متن کامل

Magnetic Nature of Intrinsic Carbon Defects

Magnetism is a phenomenon that has been known for a very long time. Iron, cobalt, and nickel are known ferromagnetic materials. It is less known, probably because it is so unexpected, that even carbon can have ferromagnetic behaviour. Experimentally this has been confirmed on many occasions within the last decade. Ferromagnetic behaviour of carbon provides an example of the fact that magnetism ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 114 24  شماره 

صفحات  -

تاریخ انتشار 2015